Home » Ask Physics » Principle of Working of Microwave Oven

Principle of Working of Microwave Oven

Manisha Chowdhury asked:

Why is it called a microwave oven?
Who invented it?
What is the principle of its working?

Answer:

A microwave oven is used to cook (or heat) food with the help of microwaves produced by magnetron – the device producing microwaves in the oven. Microwave ovens are so quick and efficient because they channel heat energy directly to the molecules (tiny particles) inside food.

Who invented Microwave Oven?

Percy-spencerPercy Spencer is generally credited with inventing the modern microwave oven after World War II from radar technology developed during the war. Named the “Radarange”, it was first sold in 1946. Raytheon later licensed its patents for a home-use microwave oven that was first introduced by Tappan in 1955, but these units were still too large and expensive for general home use. The countertop microwave oven was first introduced in 1967 by the Amana Corporation, and their use has spread into commercial and residential kitchens around the world.

Working of microwave oven

microwave ovenA microwave oven, commonly referred to as a microwave, is a kitchen appliance that heats and cooks food by exposing it to electromagnetic radiation in the microwave spectrum. This induces polar molecules in the food to rotate and produce thermal energy in a process known as dielectric heating. Microwave ovens heat foods quickly and efficiently because excitation is fairly uniform in the outer25–38 mm (1–1.5 inches) of a homogenous (high water content) food item; food is more evenly heated throughout (except in heterogeneous, dense objects) than generally occurs in other cooking techniques.

Magnetron2A microwave oven heats food by passing microwave radiation through it. Microwaves are a form of non-ionizing electromagnetic radiation with a frequency higher than ordinary radio waves but lower than infrared light. Microwave ovens use frequencies in one of the ISM (industrial, scientific, medical) bands, which are reserved for this use, so they don’t interfere with other vital radio services. Consumer ovens usually use 2.45 gigahertz (GHz)—a wavelength of 12.2 centimetres (4.80 in)—while large industrial/commercial ovens often use 915 megahertz (MHz)—32.8 centimetres (12.9 in). Water, fat, and other substances in the food absorb energy from the microwaves in a process called dielectric heating. Many molecules (such as those of water) are electric dipoles, meaning that they have a partial positive charge at one end and a partial negative charge at the other, and therefore rotate as they try to align themselves with the alternating electric field of the microwaves. Rotating molecules hit other molecules and put them into motion, thus dispersing energy. This energy, when dispersed as molecular vibration in solids and liquids (i.e. as both potential energy and kinetic energy of atoms), is heat.

For more details refer to :

 

Ask a Doubt

Post your Physics Doubts here

Name (required)

Email (required)

Subject

Message/Doubt/Question

Upload a file if required

Archives

askphysics@Twitter

%d bloggers like this: